using System; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Math; using Org.BouncyCastle.Math.EC; namespace Org.BouncyCastle.Crypto.Agreement; public class ECMqvBasicAgreement : IBasicAgreement { protected internal MqvPrivateParameters privParams; public virtual void Init(ICipherParameters parameters) { if (parameters is ParametersWithRandom) { parameters = ((ParametersWithRandom)parameters).Parameters; } privParams = (MqvPrivateParameters)parameters; } public virtual int GetFieldSize() { return (privParams.StaticPrivateKey.Parameters.Curve.FieldSize + 7) / 8; } public virtual BigInteger CalculateAgreement(ICipherParameters pubKey) { MqvPublicParameters mqvPublicParameters = (MqvPublicParameters)pubKey; ECPrivateKeyParameters staticPrivateKey = privParams.StaticPrivateKey; ECDomainParameters parameters = staticPrivateKey.Parameters; if (!parameters.Equals(mqvPublicParameters.StaticPublicKey.Parameters)) { throw new InvalidOperationException("ECMQV public key components have wrong domain parameters"); } ECPoint eCPoint = CalculateMqvAgreement(parameters, staticPrivateKey, privParams.EphemeralPrivateKey, privParams.EphemeralPublicKey, mqvPublicParameters.StaticPublicKey, mqvPublicParameters.EphemeralPublicKey).Normalize(); if (eCPoint.IsInfinity) { throw new InvalidOperationException("Infinity is not a valid agreement value for MQV"); } return eCPoint.AffineXCoord.ToBigInteger(); } private static ECPoint CalculateMqvAgreement(ECDomainParameters parameters, ECPrivateKeyParameters d1U, ECPrivateKeyParameters d2U, ECPublicKeyParameters Q2U, ECPublicKeyParameters Q1V, ECPublicKeyParameters Q2V) { BigInteger n = parameters.N; int num = (n.BitLength + 1) / 2; BigInteger m = BigInteger.One.ShiftLeft(num); ECCurve curve = parameters.Curve; ECPoint eCPoint = ECAlgorithms.CleanPoint(curve, Q2U.Q); ECPoint p = ECAlgorithms.CleanPoint(curve, Q1V.Q); ECPoint eCPoint2 = ECAlgorithms.CleanPoint(curve, Q2V.Q); BigInteger bigInteger = eCPoint.AffineXCoord.ToBigInteger(); BigInteger bigInteger2 = bigInteger.Mod(m); BigInteger val = bigInteger2.SetBit(num); BigInteger val2 = d1U.D.Multiply(val).Add(d2U.D).Mod(n); BigInteger bigInteger3 = eCPoint2.AffineXCoord.ToBigInteger(); BigInteger bigInteger4 = bigInteger3.Mod(m); BigInteger bigInteger5 = bigInteger4.SetBit(num); BigInteger bigInteger6 = parameters.H.Multiply(val2).Mod(n); return ECAlgorithms.SumOfTwoMultiplies(p, bigInteger5.Multiply(bigInteger6).Mod(n), eCPoint2, bigInteger6); } }