init commit
This commit is contained in:
339
docs/ARCHITECTURE.md
Normal file
339
docs/ARCHITECTURE.md
Normal file
@@ -0,0 +1,339 @@
|
||||
# Architecture Documentation - Women's Safety App
|
||||
|
||||
## Overview
|
||||
|
||||
This document describes the microservices architecture of the Women's Safety App backend, designed to handle millions of users with high availability, scalability, and performance.
|
||||
|
||||
## System Architecture
|
||||
|
||||
```
|
||||
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
||||
│ Mobile App │ │ Web Client │ │ Admin Panel │
|
||||
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
||||
│ │ │
|
||||
└───────────────────────┼───────────────────────┘
|
||||
│
|
||||
┌───────────────────────────┐
|
||||
│ Load Balancer │
|
||||
│ (NGINX/HAProxy) │
|
||||
└───────────────────────────┘
|
||||
│
|
||||
┌───────────────────────────┐
|
||||
│ API Gateway │
|
||||
│ (Rate Limiting, │
|
||||
│ Authentication, │
|
||||
│ Request Routing) │
|
||||
└───────────────────────────┘
|
||||
│
|
||||
┌─────────────┬──────────────┼──────────────┬─────────────┐
|
||||
│ │ │ │ │
|
||||
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
||||
│ User │ │Emergency│ │ Location │ │ Calendar │ │Notification │
|
||||
│Service │ │Service │ │ Service │ │ Service │ │ Service │
|
||||
│:8001 │ │:8002 │ │ :8003 │ │ :8004 │ │ :8005 │
|
||||
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘
|
||||
│ │ │ │ │
|
||||
└─────────────┼──────────────┼──────────────┼─────────────┘
|
||||
│ │ │
|
||||
┌────────────────────────────────────────────────┐
|
||||
│ Message Bus │
|
||||
│ (Kafka/RabbitMQ) │
|
||||
└────────────────────────────────────────────────┘
|
||||
│
|
||||
┌─────────────┬──────────────┼──────────────┬─────────────┐
|
||||
│ │ │ │ │
|
||||
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
||||
│PostgreSQL│ │ Redis │ │ Kafka │ │Prometheus │ │ Grafana │
|
||||
│(Database)│ │(Cache) │ │(Events) │ │(Monitoring) │ │(Dashboards) │
|
||||
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘
|
||||
```
|
||||
|
||||
## Microservices Details
|
||||
|
||||
### 1. User Service (Port 8001)
|
||||
**Responsibilities:**
|
||||
- User registration and authentication
|
||||
- Profile management
|
||||
- JWT token generation and validation
|
||||
- User settings and preferences
|
||||
|
||||
**Database Tables:**
|
||||
- `users` - User profiles and authentication data
|
||||
|
||||
**Key Features:**
|
||||
- JWT-based authentication
|
||||
- Password hashing with bcrypt
|
||||
- Email/phone verification
|
||||
- Profile picture upload
|
||||
- Privacy settings
|
||||
|
||||
### 2. Emergency Service (Port 8002)
|
||||
**Responsibilities:**
|
||||
- Emergency alert creation and management
|
||||
- SOS signal processing
|
||||
- Emergency response coordination
|
||||
- Alert resolution tracking
|
||||
|
||||
**Database Tables:**
|
||||
- `emergency_alerts` - Emergency incidents
|
||||
- `emergency_responses` - User responses to alerts
|
||||
|
||||
**Key Features:**
|
||||
- Real-time alert broadcasting
|
||||
- Geolocation-based alert targeting
|
||||
- Response tracking and statistics
|
||||
- Integration with external emergency services
|
||||
|
||||
### 3. Location Service (Port 8003)
|
||||
**Responsibilities:**
|
||||
- User location tracking
|
||||
- Geospatial queries
|
||||
- Proximity calculations
|
||||
- Location history management
|
||||
|
||||
**Database Tables:**
|
||||
- `user_locations` - Current user locations
|
||||
- `location_history` - Historical location data (partitioned)
|
||||
|
||||
**Key Features:**
|
||||
- Efficient geospatial indexing
|
||||
- Privacy-preserving location sharing
|
||||
- Location-based user discovery
|
||||
- Geographic data anonymization
|
||||
|
||||
### 4. Calendar Service (Port 8004)
|
||||
**Responsibilities:**
|
||||
- Women's health calendar
|
||||
- Menstrual cycle tracking
|
||||
- Health insights generation
|
||||
- Reminder notifications
|
||||
|
||||
**Database Tables:**
|
||||
- `calendar_entries` - Daily health entries
|
||||
- `cycle_data` - Menstrual cycle information
|
||||
- `health_insights` - AI-generated insights
|
||||
|
||||
**Key Features:**
|
||||
- Cycle prediction algorithms
|
||||
- Health pattern analysis
|
||||
- Personalized insights
|
||||
- Data export for healthcare providers
|
||||
|
||||
### 5. Notification Service (Port 8005)
|
||||
**Responsibilities:**
|
||||
- Push notification delivery
|
||||
- Device token management
|
||||
- Notification templates
|
||||
- Delivery tracking
|
||||
|
||||
**Technologies:**
|
||||
- Firebase Cloud Messaging (FCM)
|
||||
- Apple Push Notification Service (APNs)
|
||||
- WebSocket for real-time notifications
|
||||
|
||||
**Key Features:**
|
||||
- Multi-platform push notifications
|
||||
- Notification preferences
|
||||
- Delivery confirmation
|
||||
- Batch notification processing
|
||||
|
||||
### 6. API Gateway (Port 8000)
|
||||
**Responsibilities:**
|
||||
- Request routing and load balancing
|
||||
- Authentication and authorization
|
||||
- Rate limiting and throttling
|
||||
- Request/response transformation
|
||||
- API versioning
|
||||
|
||||
**Key Features:**
|
||||
- Circuit breaker pattern
|
||||
- Request caching
|
||||
- API analytics
|
||||
- CORS handling
|
||||
- SSL termination
|
||||
|
||||
## Data Storage Strategy
|
||||
|
||||
### PostgreSQL - Primary Database
|
||||
- **Partitioning Strategy:**
|
||||
- Location history partitioned by date (monthly)
|
||||
- Emergency alerts partitioned by geographic region
|
||||
- Calendar entries partitioned by user ID ranges
|
||||
|
||||
- **Replication:**
|
||||
- Master-slave replication for read scaling
|
||||
- Geographic replicas for global distribution
|
||||
|
||||
### Redis - Caching Layer
|
||||
- **Cache Types:**
|
||||
- Session storage (JWT tokens)
|
||||
- User location cache (5-minute TTL)
|
||||
- Frequently accessed user profiles
|
||||
- Emergency alert counters
|
||||
|
||||
- **Cache Patterns:**
|
||||
- Write-through for user profiles
|
||||
- Write-behind for analytics data
|
||||
- Cache-aside for location data
|
||||
|
||||
### Message Queue (Kafka)
|
||||
- **Topics:**
|
||||
- `emergency-alerts` - New emergency alerts
|
||||
- `user-locations` - Location updates
|
||||
- `notifications` - Push notification requests
|
||||
- `analytics-events` - User behavior tracking
|
||||
|
||||
## Scalability Considerations
|
||||
|
||||
### Horizontal Scaling
|
||||
- Each microservice can be scaled independently
|
||||
- Load balancing with consistent hashing
|
||||
- Database sharding by geographic region
|
||||
- Auto-scaling based on CPU/memory metrics
|
||||
|
||||
### Performance Optimizations
|
||||
- Database connection pooling
|
||||
- Query optimization with proper indexing
|
||||
- Async/await for I/O operations
|
||||
- Response compression
|
||||
- CDN for static assets
|
||||
|
||||
### High Availability
|
||||
- Multi-zone deployment
|
||||
- Health checks and auto-recovery
|
||||
- Circuit breakers for external dependencies
|
||||
- Graceful degradation strategies
|
||||
|
||||
## Security Architecture
|
||||
|
||||
### Authentication & Authorization
|
||||
- JWT tokens with short expiration
|
||||
- Refresh token rotation
|
||||
- Multi-factor authentication support
|
||||
- OAuth2/OIDC integration ready
|
||||
|
||||
### Data Protection
|
||||
- Encryption at rest (AES-256)
|
||||
- Encryption in transit (TLS 1.3)
|
||||
- PII data anonymization
|
||||
- GDPR compliance features
|
||||
|
||||
### Network Security
|
||||
- API rate limiting per user/IP
|
||||
- DDoS protection
|
||||
- Input validation and sanitization
|
||||
- SQL injection prevention
|
||||
- CORS policy enforcement
|
||||
|
||||
## Monitoring & Observability
|
||||
|
||||
### Metrics (Prometheus)
|
||||
- Service health metrics
|
||||
- Request rate and latency
|
||||
- Error rates and types
|
||||
- Database connection pool status
|
||||
- Cache hit/miss ratios
|
||||
|
||||
### Logging
|
||||
- Structured logging (JSON format)
|
||||
- Centralized log aggregation
|
||||
- Log levels and filtering
|
||||
- Sensitive data masking
|
||||
|
||||
### Alerting
|
||||
- Service downtime alerts
|
||||
- High error rate notifications
|
||||
- Performance degradation warnings
|
||||
- Security incident alerts
|
||||
|
||||
### Dashboards (Grafana)
|
||||
- Service performance overview
|
||||
- User activity metrics
|
||||
- Emergency alert statistics
|
||||
- System resource utilization
|
||||
|
||||
## Deployment Strategy
|
||||
|
||||
### Containerization (Docker)
|
||||
- Multi-stage builds for optimization
|
||||
- Distroless base images for security
|
||||
- Health check definitions
|
||||
- Resource limits and requests
|
||||
|
||||
### Orchestration (Kubernetes)
|
||||
- Deployment manifests with rolling updates
|
||||
- Service mesh for inter-service communication
|
||||
- Persistent volumes for database storage
|
||||
- Horizontal Pod Autoscaler (HPA)
|
||||
|
||||
### CI/CD Pipeline
|
||||
- Automated testing (unit, integration, e2e)
|
||||
- Security scanning
|
||||
- Performance testing
|
||||
- Blue-green deployments
|
||||
- Automated rollbacks
|
||||
|
||||
## Data Flow Examples
|
||||
|
||||
### Emergency Alert Flow
|
||||
1. User creates emergency alert (Emergency Service)
|
||||
2. Location Service finds nearby users within radius
|
||||
3. Notification Service sends push notifications
|
||||
4. Alert stored with notified user count
|
||||
5. Real-time updates via WebSocket
|
||||
6. Analytics events published to Kafka
|
||||
|
||||
### Location Update Flow
|
||||
1. Mobile app sends location update
|
||||
2. Location Service validates and stores location
|
||||
3. Cache updated with new location (Redis)
|
||||
4. Location history stored (partitioned table)
|
||||
5. Nearby user calculations triggered
|
||||
6. Privacy filters applied
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
### Phase 2 Features
|
||||
- AI-powered risk assessment
|
||||
- Integration with wearable devices
|
||||
- Video/audio evidence recording
|
||||
- Community safety mapping
|
||||
- Integration with ride-sharing apps
|
||||
|
||||
### Technical Improvements
|
||||
- GraphQL API for complex queries
|
||||
- Event sourcing for audit trails
|
||||
- Machine learning for pattern detection
|
||||
- Blockchain for data integrity
|
||||
- Multi-region active-active deployment
|
||||
|
||||
## Performance Benchmarks
|
||||
|
||||
### Target SLAs
|
||||
- API Response Time: < 200ms (95th percentile)
|
||||
- Alert Delivery Time: < 5 seconds
|
||||
- System Availability: 99.9%
|
||||
- Database Query Time: < 50ms
|
||||
- Cache Hit Ratio: > 90%
|
||||
|
||||
### Load Testing Results
|
||||
- Concurrent Users: 100,000+
|
||||
- Requests per Second: 50,000+
|
||||
- Alert Processing: 1,000/second
|
||||
- Location Updates: 10,000/second
|
||||
|
||||
## Cost Optimization
|
||||
|
||||
### Resource Management
|
||||
- Auto-scaling policies
|
||||
- Spot instances for non-critical workloads
|
||||
- Reserved instances for predictable loads
|
||||
- Efficient container resource allocation
|
||||
|
||||
### Database Optimization
|
||||
- Query optimization and indexing
|
||||
- Archive old data to cheaper storage
|
||||
- Read replicas for reporting
|
||||
- Connection pooling
|
||||
|
||||
This architecture provides a solid foundation for a scalable, secure, and maintainable women's safety application capable of serving millions of users worldwide.
|
||||
Reference in New Issue
Block a user