Major fixes and new features
All checks were successful
continuous-integration/drone/push Build is passing

This commit is contained in:
2025-09-25 15:51:48 +09:00
parent dd7349bb4c
commit ddce9f5125
5586 changed files with 1470941 additions and 0 deletions

View File

@@ -0,0 +1,15 @@
from __future__ import absolute_import
from kafka.metrics.compound_stat import NamedMeasurable
from kafka.metrics.dict_reporter import DictReporter
from kafka.metrics.kafka_metric import KafkaMetric
from kafka.metrics.measurable import AnonMeasurable
from kafka.metrics.metric_config import MetricConfig
from kafka.metrics.metric_name import MetricName
from kafka.metrics.metrics import Metrics
from kafka.metrics.quota import Quota
__all__ = [
'AnonMeasurable', 'DictReporter', 'KafkaMetric', 'MetricConfig',
'MetricName', 'Metrics', 'NamedMeasurable', 'Quota'
]

View File

@@ -0,0 +1,34 @@
from __future__ import absolute_import
import abc
from kafka.metrics.stat import AbstractStat
class AbstractCompoundStat(AbstractStat):
"""
A compound stat is a stat where a single measurement and associated
data structure feeds many metrics. This is the example for a
histogram which has many associated percentiles.
"""
__metaclass__ = abc.ABCMeta
def stats(self):
"""
Return list of NamedMeasurable
"""
raise NotImplementedError
class NamedMeasurable(object):
def __init__(self, metric_name, measurable_stat):
self._name = metric_name
self._stat = measurable_stat
@property
def name(self):
return self._name
@property
def stat(self):
return self._stat

View File

@@ -0,0 +1,83 @@
from __future__ import absolute_import
import logging
import threading
from kafka.metrics.metrics_reporter import AbstractMetricsReporter
logger = logging.getLogger(__name__)
class DictReporter(AbstractMetricsReporter):
"""A basic dictionary based metrics reporter.
Store all metrics in a two level dictionary of category > name > metric.
"""
def __init__(self, prefix=''):
self._lock = threading.Lock()
self._prefix = prefix if prefix else '' # never allow None
self._store = {}
def snapshot(self):
"""
Return a nested dictionary snapshot of all metrics and their
values at this time. Example:
{
'category': {
'metric1_name': 42.0,
'metric2_name': 'foo'
}
}
"""
return dict((category, dict((name, metric.value())
for name, metric in list(metrics.items())))
for category, metrics in
list(self._store.items()))
def init(self, metrics):
for metric in metrics:
self.metric_change(metric)
def metric_change(self, metric):
with self._lock:
category = self.get_category(metric)
if category not in self._store:
self._store[category] = {}
self._store[category][metric.metric_name.name] = metric
def metric_removal(self, metric):
with self._lock:
category = self.get_category(metric)
metrics = self._store.get(category, {})
removed = metrics.pop(metric.metric_name.name, None)
if not metrics:
self._store.pop(category, None)
return removed
def get_category(self, metric):
"""
Return a string category for the metric.
The category is made up of this reporter's prefix and the
metric's group and tags.
Examples:
prefix = 'foo', group = 'bar', tags = {'a': 1, 'b': 2}
returns: 'foo.bar.a=1,b=2'
prefix = 'foo', group = 'bar', tags = None
returns: 'foo.bar'
prefix = None, group = 'bar', tags = None
returns: 'bar'
"""
tags = ','.join('%s=%s' % (k, v) for k, v in
sorted(metric.metric_name.tags.items()))
return '.'.join(x for x in
[self._prefix, metric.metric_name.group, tags] if x)
def configure(self, configs):
pass
def close(self):
pass

View File

@@ -0,0 +1,36 @@
from __future__ import absolute_import
import time
class KafkaMetric(object):
# NOTE java constructor takes a lock instance
def __init__(self, metric_name, measurable, config):
if not metric_name:
raise ValueError('metric_name must be non-empty')
if not measurable:
raise ValueError('measurable must be non-empty')
self._metric_name = metric_name
self._measurable = measurable
self._config = config
@property
def metric_name(self):
return self._metric_name
@property
def measurable(self):
return self._measurable
@property
def config(self):
return self._config
@config.setter
def config(self, config):
self._config = config
def value(self, time_ms=None):
if time_ms is None:
time_ms = time.time() * 1000
return self.measurable.measure(self.config, time_ms)

View File

@@ -0,0 +1,29 @@
from __future__ import absolute_import
import abc
class AbstractMeasurable(object):
"""A measurable quantity that can be registered as a metric"""
@abc.abstractmethod
def measure(self, config, now):
"""
Measure this quantity and return the result
Arguments:
config (MetricConfig): The configuration for this metric
now (int): The POSIX time in milliseconds the measurement
is being taken
Returns:
The measured value
"""
raise NotImplementedError
class AnonMeasurable(AbstractMeasurable):
def __init__(self, measure_fn):
self._measure_fn = measure_fn
def measure(self, config, now):
return float(self._measure_fn(config, now))

View File

@@ -0,0 +1,16 @@
from __future__ import absolute_import
import abc
from kafka.metrics.measurable import AbstractMeasurable
from kafka.metrics.stat import AbstractStat
class AbstractMeasurableStat(AbstractStat, AbstractMeasurable):
"""
An AbstractMeasurableStat is an AbstractStat that is also
an AbstractMeasurable (i.e. can produce a single floating point value).
This is the interface used for most of the simple statistics such
as Avg, Max, Count, etc.
"""
__metaclass__ = abc.ABCMeta

View File

@@ -0,0 +1,33 @@
from __future__ import absolute_import
import sys
class MetricConfig(object):
"""Configuration values for metrics"""
def __init__(self, quota=None, samples=2, event_window=sys.maxsize,
time_window_ms=30 * 1000, tags=None):
"""
Arguments:
quota (Quota, optional): Upper or lower bound of a value.
samples (int, optional): Max number of samples kept per metric.
event_window (int, optional): Max number of values per sample.
time_window_ms (int, optional): Max age of an individual sample.
tags (dict of {str: str}, optional): Tags for each metric.
"""
self.quota = quota
self._samples = samples
self.event_window = event_window
self.time_window_ms = time_window_ms
# tags should be OrderedDict (not supported in py26)
self.tags = tags if tags else {}
@property
def samples(self):
return self._samples
@samples.setter
def samples(self, value):
if value < 1:
raise ValueError('The number of samples must be at least 1.')
self._samples = value

View File

@@ -0,0 +1,106 @@
from __future__ import absolute_import
import copy
class MetricName(object):
"""
This class encapsulates a metric's name, logical group and its
related attributes (tags).
group, tags parameters can be used to create unique metric names.
e.g. domainName:type=group,key1=val1,key2=val2
Usage looks something like this:
# set up metrics:
metric_tags = {'client-id': 'producer-1', 'topic': 'topic'}
metric_config = MetricConfig(tags=metric_tags)
# metrics is the global repository of metrics and sensors
metrics = Metrics(metric_config)
sensor = metrics.sensor('message-sizes')
metric_name = metrics.metric_name('message-size-avg',
'producer-metrics',
'average message size')
sensor.add(metric_name, Avg())
metric_name = metrics.metric_name('message-size-max',
sensor.add(metric_name, Max())
tags = {'client-id': 'my-client', 'topic': 'my-topic'}
metric_name = metrics.metric_name('message-size-min',
'producer-metrics',
'message minimum size', tags)
sensor.add(metric_name, Min())
# as messages are sent we record the sizes
sensor.record(message_size)
"""
def __init__(self, name, group, description=None, tags=None):
"""
Arguments:
name (str): The name of the metric.
group (str): The logical group name of the metrics to which this
metric belongs.
description (str, optional): A human-readable description to
include in the metric.
tags (dict, optional): Additional key/val attributes of the metric.
"""
if not (name and group):
raise ValueError('name and group must be non-empty.')
if tags is not None and not isinstance(tags, dict):
raise ValueError('tags must be a dict if present.')
self._name = name
self._group = group
self._description = description
self._tags = copy.copy(tags)
self._hash = 0
@property
def name(self):
return self._name
@property
def group(self):
return self._group
@property
def description(self):
return self._description
@property
def tags(self):
return copy.copy(self._tags)
def __hash__(self):
if self._hash != 0:
return self._hash
prime = 31
result = 1
result = prime * result + hash(self.group)
result = prime * result + hash(self.name)
tags_hash = hash(frozenset(self.tags.items())) if self.tags else 0
result = prime * result + tags_hash
self._hash = result
return result
def __eq__(self, other):
if self is other:
return True
if other is None:
return False
return (type(self) == type(other) and
self.group == other.group and
self.name == other.name and
self.tags == other.tags)
def __ne__(self, other):
return not self.__eq__(other)
def __str__(self):
return 'MetricName(name=%s, group=%s, description=%s, tags=%s)' % (
self.name, self.group, self.description, self.tags)

View File

@@ -0,0 +1,261 @@
from __future__ import absolute_import
import logging
import sys
import time
import threading
from kafka.metrics import AnonMeasurable, KafkaMetric, MetricConfig, MetricName
from kafka.metrics.stats import Sensor
logger = logging.getLogger(__name__)
class Metrics(object):
"""
A registry of sensors and metrics.
A metric is a named, numerical measurement. A sensor is a handle to
record numerical measurements as they occur. Each Sensor has zero or
more associated metrics. For example a Sensor might represent message
sizes and we might associate with this sensor a metric for the average,
maximum, or other statistics computed off the sequence of message sizes
that are recorded by the sensor.
Usage looks something like this:
# set up metrics:
metrics = Metrics() # the global repository of metrics and sensors
sensor = metrics.sensor('message-sizes')
metric_name = MetricName('message-size-avg', 'producer-metrics')
sensor.add(metric_name, Avg())
metric_name = MetricName('message-size-max', 'producer-metrics')
sensor.add(metric_name, Max())
# as messages are sent we record the sizes
sensor.record(message_size);
"""
def __init__(self, default_config=None, reporters=None,
enable_expiration=False):
"""
Create a metrics repository with a default config, given metric
reporters and the ability to expire eligible sensors
Arguments:
default_config (MetricConfig, optional): The default config
reporters (list of AbstractMetricsReporter, optional):
The metrics reporters
enable_expiration (bool, optional): true if the metrics instance
can garbage collect inactive sensors, false otherwise
"""
self._lock = threading.RLock()
self._config = default_config or MetricConfig()
self._sensors = {}
self._metrics = {}
self._children_sensors = {}
self._reporters = reporters or []
for reporter in self._reporters:
reporter.init([])
if enable_expiration:
def expire_loop():
while True:
# delay 30 seconds
time.sleep(30)
self.ExpireSensorTask.run(self)
metrics_scheduler = threading.Thread(target=expire_loop)
# Creating a daemon thread to not block shutdown
metrics_scheduler.daemon = True
metrics_scheduler.start()
self.add_metric(self.metric_name('count', 'kafka-metrics-count',
'total number of registered metrics'),
AnonMeasurable(lambda config, now: len(self._metrics)))
@property
def config(self):
return self._config
@property
def metrics(self):
"""
Get all the metrics currently maintained and indexed by metricName
"""
return self._metrics
def metric_name(self, name, group, description='', tags=None):
"""
Create a MetricName with the given name, group, description and tags,
plus default tags specified in the metric configuration.
Tag in tags takes precedence if the same tag key is specified in
the default metric configuration.
Arguments:
name (str): The name of the metric
group (str): logical group name of the metrics to which this
metric belongs
description (str, optional): A human-readable description to
include in the metric
tags (dict, optionals): additional key/value attributes of
the metric
"""
combined_tags = dict(self.config.tags)
combined_tags.update(tags or {})
return MetricName(name, group, description, combined_tags)
def get_sensor(self, name):
"""
Get the sensor with the given name if it exists
Arguments:
name (str): The name of the sensor
Returns:
Sensor: The sensor or None if no such sensor exists
"""
if not name:
raise ValueError('name must be non-empty')
return self._sensors.get(name, None)
def sensor(self, name, config=None,
inactive_sensor_expiration_time_seconds=sys.maxsize,
parents=None):
"""
Get or create a sensor with the given unique name and zero or
more parent sensors. All parent sensors will receive every value
recorded with this sensor.
Arguments:
name (str): The name of the sensor
config (MetricConfig, optional): A default configuration to use
for this sensor for metrics that don't have their own config
inactive_sensor_expiration_time_seconds (int, optional):
If no value if recorded on the Sensor for this duration of
time, it is eligible for removal
parents (list of Sensor): The parent sensors
Returns:
Sensor: The sensor that is created
"""
sensor = self.get_sensor(name)
if sensor:
return sensor
with self._lock:
sensor = self.get_sensor(name)
if not sensor:
sensor = Sensor(self, name, parents, config or self.config,
inactive_sensor_expiration_time_seconds)
self._sensors[name] = sensor
if parents:
for parent in parents:
children = self._children_sensors.get(parent)
if not children:
children = []
self._children_sensors[parent] = children
children.append(sensor)
logger.debug('Added sensor with name %s', name)
return sensor
def remove_sensor(self, name):
"""
Remove a sensor (if it exists), associated metrics and its children.
Arguments:
name (str): The name of the sensor to be removed
"""
sensor = self._sensors.get(name)
if sensor:
child_sensors = None
with sensor._lock:
with self._lock:
val = self._sensors.pop(name, None)
if val and val == sensor:
for metric in sensor.metrics:
self.remove_metric(metric.metric_name)
logger.debug('Removed sensor with name %s', name)
child_sensors = self._children_sensors.pop(sensor, None)
if child_sensors:
for child_sensor in child_sensors:
self.remove_sensor(child_sensor.name)
def add_metric(self, metric_name, measurable, config=None):
"""
Add a metric to monitor an object that implements measurable.
This metric won't be associated with any sensor.
This is a way to expose existing values as metrics.
Arguments:
metricName (MetricName): The name of the metric
measurable (AbstractMeasurable): The measurable that will be
measured by this metric
config (MetricConfig, optional): The configuration to use when
measuring this measurable
"""
# NOTE there was a lock here, but i don't think it's needed
metric = KafkaMetric(metric_name, measurable, config or self.config)
self.register_metric(metric)
def remove_metric(self, metric_name):
"""
Remove a metric if it exists and return it. Return None otherwise.
If a metric is removed, `metric_removal` will be invoked
for each reporter.
Arguments:
metric_name (MetricName): The name of the metric
Returns:
KafkaMetric: the removed `KafkaMetric` or None if no such
metric exists
"""
with self._lock:
metric = self._metrics.pop(metric_name, None)
if metric:
for reporter in self._reporters:
reporter.metric_removal(metric)
return metric
def add_reporter(self, reporter):
"""Add a MetricReporter"""
with self._lock:
reporter.init(list(self.metrics.values()))
self._reporters.append(reporter)
def register_metric(self, metric):
with self._lock:
if metric.metric_name in self.metrics:
raise ValueError('A metric named "%s" already exists, cannot'
' register another one.' % (metric.metric_name,))
self.metrics[metric.metric_name] = metric
for reporter in self._reporters:
reporter.metric_change(metric)
class ExpireSensorTask(object):
"""
This iterates over every Sensor and triggers a remove_sensor
if it has expired. Package private for testing
"""
@staticmethod
def run(metrics):
items = list(metrics._sensors.items())
for name, sensor in items:
# remove_sensor also locks the sensor object. This is fine
# because synchronized is reentrant. There is however a minor
# race condition here. Assume we have a parent sensor P and
# child sensor C. Calling record on C would cause a record on
# P as well. So expiration time for P == expiration time for C.
# If the record on P happens via C just after P is removed,
# that will cause C to also get removed. Since the expiration
# time is typically high it is not expected to be a significant
# concern and thus not necessary to optimize
with sensor._lock:
if sensor.has_expired():
logger.debug('Removing expired sensor %s', name)
metrics.remove_sensor(name)
def close(self):
"""Close this metrics repository."""
for reporter in self._reporters:
reporter.close()
self._metrics.clear()

View File

@@ -0,0 +1,57 @@
from __future__ import absolute_import
import abc
class AbstractMetricsReporter(object):
"""
An abstract class to allow things to listen as new metrics
are created so they can be reported.
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def init(self, metrics):
"""
This is called when the reporter is first registered
to initially register all existing metrics
Arguments:
metrics (list of KafkaMetric): All currently existing metrics
"""
raise NotImplementedError
@abc.abstractmethod
def metric_change(self, metric):
"""
This is called whenever a metric is updated or added
Arguments:
metric (KafkaMetric)
"""
raise NotImplementedError
@abc.abstractmethod
def metric_removal(self, metric):
"""
This is called whenever a metric is removed
Arguments:
metric (KafkaMetric)
"""
raise NotImplementedError
@abc.abstractmethod
def configure(self, configs):
"""
Configure this class with the given key-value pairs
Arguments:
configs (dict of {str, ?})
"""
raise NotImplementedError
@abc.abstractmethod
def close(self):
"""Called when the metrics repository is closed."""
raise NotImplementedError

View File

@@ -0,0 +1,42 @@
from __future__ import absolute_import
class Quota(object):
"""An upper or lower bound for metrics"""
def __init__(self, bound, is_upper):
self._bound = bound
self._upper = is_upper
@staticmethod
def upper_bound(upper_bound):
return Quota(upper_bound, True)
@staticmethod
def lower_bound(lower_bound):
return Quota(lower_bound, False)
def is_upper_bound(self):
return self._upper
@property
def bound(self):
return self._bound
def is_acceptable(self, value):
return ((self.is_upper_bound() and value <= self.bound) or
(not self.is_upper_bound() and value >= self.bound))
def __hash__(self):
prime = 31
result = prime + self.bound
return prime * result + self.is_upper_bound()
def __eq__(self, other):
if self is other:
return True
return (type(self) == type(other) and
self.bound == other.bound and
self.is_upper_bound() == other.is_upper_bound())
def __ne__(self, other):
return not self.__eq__(other)

View File

@@ -0,0 +1,23 @@
from __future__ import absolute_import
import abc
class AbstractStat(object):
"""
An AbstractStat is a quantity such as average, max, etc that is computed
off the stream of updates to a sensor
"""
__metaclass__ = abc.ABCMeta
@abc.abstractmethod
def record(self, config, value, time_ms):
"""
Record the given value
Arguments:
config (MetricConfig): The configuration to use for this metric
value (float): The value to record
timeMs (int): The POSIX time in milliseconds this value occurred
"""
raise NotImplementedError

View File

@@ -0,0 +1,17 @@
from __future__ import absolute_import
from kafka.metrics.stats.avg import Avg
from kafka.metrics.stats.count import Count
from kafka.metrics.stats.histogram import Histogram
from kafka.metrics.stats.max_stat import Max
from kafka.metrics.stats.min_stat import Min
from kafka.metrics.stats.percentile import Percentile
from kafka.metrics.stats.percentiles import Percentiles
from kafka.metrics.stats.rate import Rate
from kafka.metrics.stats.sensor import Sensor
from kafka.metrics.stats.total import Total
__all__ = [
'Avg', 'Count', 'Histogram', 'Max', 'Min', 'Percentile', 'Percentiles',
'Rate', 'Sensor', 'Total'
]

View File

@@ -0,0 +1,24 @@
from __future__ import absolute_import
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class Avg(AbstractSampledStat):
"""
An AbstractSampledStat that maintains a simple average over its samples.
"""
def __init__(self):
super(Avg, self).__init__(0.0)
def update(self, sample, config, value, now):
sample.value += value
def combine(self, samples, config, now):
total_sum = 0
total_count = 0
for sample in samples:
total_sum += sample.value
total_count += sample.event_count
if not total_count:
return 0
return float(total_sum) / total_count

View File

@@ -0,0 +1,17 @@
from __future__ import absolute_import
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class Count(AbstractSampledStat):
"""
An AbstractSampledStat that maintains a simple count of what it has seen.
"""
def __init__(self):
super(Count, self).__init__(0.0)
def update(self, sample, config, value, now):
sample.value += 1.0
def combine(self, samples, config, now):
return float(sum(sample.value for sample in samples))

View File

@@ -0,0 +1,95 @@
from __future__ import absolute_import
import math
class Histogram(object):
def __init__(self, bin_scheme):
self._hist = [0.0] * bin_scheme.bins
self._count = 0.0
self._bin_scheme = bin_scheme
def record(self, value):
self._hist[self._bin_scheme.to_bin(value)] += 1.0
self._count += 1.0
def value(self, quantile):
if self._count == 0.0:
return float('NaN')
_sum = 0.0
quant = float(quantile)
for i, value in enumerate(self._hist[:-1]):
_sum += value
if _sum / self._count > quant:
return self._bin_scheme.from_bin(i)
return float('inf')
@property
def counts(self):
return self._hist
def clear(self):
for i in range(self._hist):
self._hist[i] = 0.0
self._count = 0
def __str__(self):
values = ['%.10f:%.0f' % (self._bin_scheme.from_bin(i), value) for
i, value in enumerate(self._hist[:-1])]
values.append('%s:%s' % (float('inf'), self._hist[-1]))
return '{%s}' % ','.join(values)
class ConstantBinScheme(object):
def __init__(self, bins, min_val, max_val):
if bins < 2:
raise ValueError('Must have at least 2 bins.')
self._min = float(min_val)
self._max = float(max_val)
self._bins = int(bins)
self._bucket_width = (max_val - min_val) / (bins - 2)
@property
def bins(self):
return self._bins
def from_bin(self, b):
if b == 0:
return float('-inf')
elif b == self._bins - 1:
return float('inf')
else:
return self._min + (b - 1) * self._bucket_width
def to_bin(self, x):
if x < self._min:
return 0
elif x > self._max:
return self._bins - 1
else:
return int(((x - self._min) / self._bucket_width) + 1)
class LinearBinScheme(object):
def __init__(self, num_bins, max_val):
self._bins = num_bins
self._max = max_val
self._scale = max_val / (num_bins * (num_bins - 1) / 2)
@property
def bins(self):
return self._bins
def from_bin(self, b):
if b == self._bins - 1:
return float('inf')
else:
unscaled = (b * (b + 1.0)) / 2.0
return unscaled * self._scale
def to_bin(self, x):
if x < 0.0:
raise ValueError('Values less than 0.0 not accepted.')
elif x > self._max:
return self._bins - 1
else:
scaled = x / self._scale
return int(-0.5 + math.sqrt(2.0 * scaled + 0.25))

View File

@@ -0,0 +1,17 @@
from __future__ import absolute_import
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class Max(AbstractSampledStat):
"""An AbstractSampledStat that gives the max over its samples."""
def __init__(self):
super(Max, self).__init__(float('-inf'))
def update(self, sample, config, value, now):
sample.value = max(sample.value, value)
def combine(self, samples, config, now):
if not samples:
return float('-inf')
return float(max(sample.value for sample in samples))

View File

@@ -0,0 +1,19 @@
from __future__ import absolute_import
import sys
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class Min(AbstractSampledStat):
"""An AbstractSampledStat that gives the min over its samples."""
def __init__(self):
super(Min, self).__init__(float(sys.maxsize))
def update(self, sample, config, value, now):
sample.value = min(sample.value, value)
def combine(self, samples, config, now):
if not samples:
return float(sys.maxsize)
return float(min(sample.value for sample in samples))

View File

@@ -0,0 +1,15 @@
from __future__ import absolute_import
class Percentile(object):
def __init__(self, metric_name, percentile):
self._metric_name = metric_name
self._percentile = float(percentile)
@property
def name(self):
return self._metric_name
@property
def percentile(self):
return self._percentile

View File

@@ -0,0 +1,74 @@
from __future__ import absolute_import
from kafka.metrics import AnonMeasurable, NamedMeasurable
from kafka.metrics.compound_stat import AbstractCompoundStat
from kafka.metrics.stats import Histogram
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class BucketSizing(object):
CONSTANT = 0
LINEAR = 1
class Percentiles(AbstractSampledStat, AbstractCompoundStat):
"""A compound stat that reports one or more percentiles"""
def __init__(self, size_in_bytes, bucketing, max_val, min_val=0.0,
percentiles=None):
super(Percentiles, self).__init__(0.0)
self._percentiles = percentiles or []
self._buckets = int(size_in_bytes / 4)
if bucketing == BucketSizing.CONSTANT:
self._bin_scheme = Histogram.ConstantBinScheme(self._buckets,
min_val, max_val)
elif bucketing == BucketSizing.LINEAR:
if min_val != 0.0:
raise ValueError('Linear bucket sizing requires min_val'
' to be 0.0.')
self.bin_scheme = Histogram.LinearBinScheme(self._buckets, max_val)
else:
ValueError('Unknown bucket type: %s' % (bucketing,))
def stats(self):
measurables = []
def make_measure_fn(pct):
return lambda config, now: self.value(config, now,
pct / 100.0)
for percentile in self._percentiles:
measure_fn = make_measure_fn(percentile.percentile)
stat = NamedMeasurable(percentile.name, AnonMeasurable(measure_fn))
measurables.append(stat)
return measurables
def value(self, config, now, quantile):
self.purge_obsolete_samples(config, now)
count = sum(sample.event_count for sample in self._samples)
if count == 0.0:
return float('NaN')
sum_val = 0.0
quant = float(quantile)
for b in range(self._buckets):
for sample in self._samples:
assert type(sample) is self.HistogramSample
hist = sample.histogram.counts
sum_val += hist[b]
if sum_val / count > quant:
return self._bin_scheme.from_bin(b)
return float('inf')
def combine(self, samples, config, now):
return self.value(config, now, 0.5)
def new_sample(self, time_ms):
return Percentiles.HistogramSample(self._bin_scheme, time_ms)
def update(self, sample, config, value, time_ms):
assert type(sample) is self.HistogramSample
sample.histogram.record(value)
class HistogramSample(AbstractSampledStat.Sample):
def __init__(self, scheme, now):
super(Percentiles.HistogramSample, self).__init__(0.0, now)
self.histogram = Histogram(scheme)

View File

@@ -0,0 +1,117 @@
from __future__ import absolute_import
from kafka.metrics.measurable_stat import AbstractMeasurableStat
from kafka.metrics.stats.sampled_stat import AbstractSampledStat
class TimeUnit(object):
_names = {
'nanosecond': 0,
'microsecond': 1,
'millisecond': 2,
'second': 3,
'minute': 4,
'hour': 5,
'day': 6,
}
NANOSECONDS = _names['nanosecond']
MICROSECONDS = _names['microsecond']
MILLISECONDS = _names['millisecond']
SECONDS = _names['second']
MINUTES = _names['minute']
HOURS = _names['hour']
DAYS = _names['day']
@staticmethod
def get_name(time_unit):
return TimeUnit._names[time_unit]
class Rate(AbstractMeasurableStat):
"""
The rate of the given quantity. By default this is the total observed
over a set of samples from a sampled statistic divided by the elapsed
time over the sample windows. Alternative AbstractSampledStat
implementations can be provided, however, to record the rate of
occurrences (e.g. the count of values measured over the time interval)
or other such values.
"""
def __init__(self, time_unit=TimeUnit.SECONDS, sampled_stat=None):
self._stat = sampled_stat or SampledTotal()
self._unit = time_unit
def unit_name(self):
return TimeUnit.get_name(self._unit)
def record(self, config, value, time_ms):
self._stat.record(config, value, time_ms)
def measure(self, config, now):
value = self._stat.measure(config, now)
return float(value) / self.convert(self.window_size(config, now))
def window_size(self, config, now):
# purge old samples before we compute the window size
self._stat.purge_obsolete_samples(config, now)
"""
Here we check the total amount of time elapsed since the oldest
non-obsolete window. This give the total window_size of the batch
which is the time used for Rate computation. However, there is
an issue if we do not have sufficient data for e.g. if only
1 second has elapsed in a 30 second window, the measured rate
will be very high. Hence we assume that the elapsed time is
always N-1 complete windows plus whatever fraction of the final
window is complete.
Note that we could simply count the amount of time elapsed in
the current window and add n-1 windows to get the total time,
but this approach does not account for sleeps. AbstractSampledStat
only creates samples whenever record is called, if no record is
called for a period of time that time is not accounted for in
window_size and produces incorrect results.
"""
total_elapsed_time_ms = now - self._stat.oldest(now).last_window_ms
# Check how many full windows of data we have currently retained
num_full_windows = int(total_elapsed_time_ms / config.time_window_ms)
min_full_windows = config.samples - 1
# If the available windows are less than the minimum required,
# add the difference to the totalElapsedTime
if num_full_windows < min_full_windows:
total_elapsed_time_ms += ((min_full_windows - num_full_windows) *
config.time_window_ms)
return total_elapsed_time_ms
def convert(self, time_ms):
if self._unit == TimeUnit.NANOSECONDS:
return time_ms * 1000.0 * 1000.0
elif self._unit == TimeUnit.MICROSECONDS:
return time_ms * 1000.0
elif self._unit == TimeUnit.MILLISECONDS:
return time_ms
elif self._unit == TimeUnit.SECONDS:
return time_ms / 1000.0
elif self._unit == TimeUnit.MINUTES:
return time_ms / (60.0 * 1000.0)
elif self._unit == TimeUnit.HOURS:
return time_ms / (60.0 * 60.0 * 1000.0)
elif self._unit == TimeUnit.DAYS:
return time_ms / (24.0 * 60.0 * 60.0 * 1000.0)
else:
raise ValueError('Unknown unit: %s' % (self._unit,))
class SampledTotal(AbstractSampledStat):
def __init__(self, initial_value=None):
if initial_value is not None:
raise ValueError('initial_value cannot be set on SampledTotal')
super(SampledTotal, self).__init__(0.0)
def update(self, sample, config, value, time_ms):
sample.value += value
def combine(self, samples, config, now):
return float(sum(sample.value for sample in samples))

View File

@@ -0,0 +1,101 @@
from __future__ import absolute_import
import abc
from kafka.metrics.measurable_stat import AbstractMeasurableStat
class AbstractSampledStat(AbstractMeasurableStat):
"""
An AbstractSampledStat records a single scalar value measured over
one or more samples. Each sample is recorded over a configurable
window. The window can be defined by number of events or elapsed
time (or both, if both are given the window is complete when
*either* the event count or elapsed time criterion is met).
All the samples are combined to produce the measurement. When a
window is complete the oldest sample is cleared and recycled to
begin recording the next sample.
Subclasses of this class define different statistics measured
using this basic pattern.
"""
__metaclass__ = abc.ABCMeta
def __init__(self, initial_value):
self._initial_value = initial_value
self._samples = []
self._current = 0
@abc.abstractmethod
def update(self, sample, config, value, time_ms):
raise NotImplementedError
@abc.abstractmethod
def combine(self, samples, config, now):
raise NotImplementedError
def record(self, config, value, time_ms):
sample = self.current(time_ms)
if sample.is_complete(time_ms, config):
sample = self._advance(config, time_ms)
self.update(sample, config, float(value), time_ms)
sample.event_count += 1
def new_sample(self, time_ms):
return self.Sample(self._initial_value, time_ms)
def measure(self, config, now):
self.purge_obsolete_samples(config, now)
return float(self.combine(self._samples, config, now))
def current(self, time_ms):
if not self._samples:
self._samples.append(self.new_sample(time_ms))
return self._samples[self._current]
def oldest(self, now):
if not self._samples:
self._samples.append(self.new_sample(now))
oldest = self._samples[0]
for sample in self._samples[1:]:
if sample.last_window_ms < oldest.last_window_ms:
oldest = sample
return oldest
def purge_obsolete_samples(self, config, now):
"""
Timeout any windows that have expired in the absence of any events
"""
expire_age = config.samples * config.time_window_ms
for sample in self._samples:
if now - sample.last_window_ms >= expire_age:
sample.reset(now)
def _advance(self, config, time_ms):
self._current = (self._current + 1) % config.samples
if self._current >= len(self._samples):
sample = self.new_sample(time_ms)
self._samples.append(sample)
return sample
else:
sample = self.current(time_ms)
sample.reset(time_ms)
return sample
class Sample(object):
def __init__(self, initial_value, now):
self.initial_value = initial_value
self.event_count = 0
self.last_window_ms = now
self.value = initial_value
def reset(self, now):
self.event_count = 0
self.last_window_ms = now
self.value = self.initial_value
def is_complete(self, time_ms, config):
return (time_ms - self.last_window_ms >= config.time_window_ms or
self.event_count >= config.event_window)

View File

@@ -0,0 +1,134 @@
from __future__ import absolute_import
import threading
import time
from kafka.errors import QuotaViolationError
from kafka.metrics import KafkaMetric
class Sensor(object):
"""
A sensor applies a continuous sequence of numerical values
to a set of associated metrics. For example a sensor on
message size would record a sequence of message sizes using
the `record(double)` api and would maintain a set
of metrics about request sizes such as the average or max.
"""
def __init__(self, registry, name, parents, config,
inactive_sensor_expiration_time_seconds):
if not name:
raise ValueError('name must be non-empty')
self._lock = threading.RLock()
self._registry = registry
self._name = name
self._parents = parents or []
self._metrics = []
self._stats = []
self._config = config
self._inactive_sensor_expiration_time_ms = (
inactive_sensor_expiration_time_seconds * 1000)
self._last_record_time = time.time() * 1000
self._check_forest(set())
def _check_forest(self, sensors):
"""Validate that this sensor doesn't end up referencing itself."""
if self in sensors:
raise ValueError('Circular dependency in sensors: %s is its own'
'parent.' % (self.name,))
sensors.add(self)
for parent in self._parents:
parent._check_forest(sensors)
@property
def name(self):
"""
The name this sensor is registered with.
This name will be unique among all registered sensors.
"""
return self._name
@property
def metrics(self):
return tuple(self._metrics)
def record(self, value=1.0, time_ms=None):
"""
Record a value at a known time.
Arguments:
value (double): The value we are recording
time_ms (int): A POSIX timestamp in milliseconds.
Default: The time when record() is evaluated (now)
Raises:
QuotaViolationException: if recording this value moves a
metric beyond its configured maximum or minimum bound
"""
if time_ms is None:
time_ms = time.time() * 1000
self._last_record_time = time_ms
with self._lock: # XXX high volume, might be performance issue
# increment all the stats
for stat in self._stats:
stat.record(self._config, value, time_ms)
self._check_quotas(time_ms)
for parent in self._parents:
parent.record(value, time_ms)
def _check_quotas(self, time_ms):
"""
Check if we have violated our quota for any metric that
has a configured quota
"""
for metric in self._metrics:
if metric.config and metric.config.quota:
value = metric.value(time_ms)
if not metric.config.quota.is_acceptable(value):
raise QuotaViolationError("'%s' violated quota. Actual: "
"%d, Threshold: %d" %
(metric.metric_name,
value,
metric.config.quota.bound))
def add_compound(self, compound_stat, config=None):
"""
Register a compound statistic with this sensor which
yields multiple measurable quantities (like a histogram)
Arguments:
stat (AbstractCompoundStat): The stat to register
config (MetricConfig): The configuration for this stat.
If None then the stat will use the default configuration
for this sensor.
"""
if not compound_stat:
raise ValueError('compound stat must be non-empty')
self._stats.append(compound_stat)
for named_measurable in compound_stat.stats():
metric = KafkaMetric(named_measurable.name, named_measurable.stat,
config or self._config)
self._registry.register_metric(metric)
self._metrics.append(metric)
def add(self, metric_name, stat, config=None):
"""
Register a metric with this sensor
Arguments:
metric_name (MetricName): The name of the metric
stat (AbstractMeasurableStat): The statistic to keep
config (MetricConfig): A special configuration for this metric.
If None use the sensor default configuration.
"""
with self._lock:
metric = KafkaMetric(metric_name, stat, config or self._config)
self._registry.register_metric(metric)
self._metrics.append(metric)
self._stats.append(stat)
def has_expired(self):
"""
Return True if the Sensor is eligible for removal due to inactivity.
"""
return ((time.time() * 1000 - self._last_record_time) >
self._inactive_sensor_expiration_time_ms)

View File

@@ -0,0 +1,15 @@
from __future__ import absolute_import
from kafka.metrics.measurable_stat import AbstractMeasurableStat
class Total(AbstractMeasurableStat):
"""An un-windowed cumulative total maintained over all time."""
def __init__(self, value=0.0):
self._total = value
def record(self, config, value, now):
self._total += value
def measure(self, config, now):
return float(self._total)