12 KiB
12 KiB
Architecture Documentation - Women's Safety App
Overview
This document describes the microservices architecture of the Women's Safety App backend, designed to handle millions of users with high availability, scalability, and performance.
System Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ Mobile App │ │ Web Client │ │ Admin Panel │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌───────────────────────────┐
│ Load Balancer │
│ (NGINX/HAProxy) │
└───────────────────────────┘
│
┌───────────────────────────┐
│ API Gateway │
│ (Rate Limiting, │
│ Authentication, │
│ Request Routing) │
└───────────────────────────┘
│
┌─────────────┬──────────────┼──────────────┬─────────────┐
│ │ │ │ │
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ User │ │Emergency│ │ Location │ │ Calendar │ │Notification │
│Service │ │Service │ │ Service │ │ Service │ │ Service │
│:8001 │ │:8002 │ │ :8003 │ │ :8004 │ │ :8005 │
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘
│ │ │ │ │
└─────────────┼──────────────┼──────────────┼─────────────┘
│ │ │
┌────────────────────────────────────────────────┐
│ Message Bus │
│ (Kafka/RabbitMQ) │
└────────────────────────────────────────────────┘
│
┌─────────────┬──────────────┼──────────────┬─────────────┐
│ │ │ │ │
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│PostgreSQL│ │ Redis │ │ Kafka │ │Prometheus │ │ Grafana │
│(Database)│ │(Cache) │ │(Events) │ │(Monitoring) │ │(Dashboards) │
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘
Microservices Details
1. User Service (Port 8001)
Responsibilities:
- User registration and authentication
- Profile management
- JWT token generation and validation
- User settings and preferences
Database Tables:
users- User profiles and authentication data
Key Features:
- JWT-based authentication
- Password hashing with bcrypt
- Email/phone verification
- Profile picture upload
- Privacy settings
2. Emergency Service (Port 8002)
Responsibilities:
- Emergency alert creation and management
- SOS signal processing
- Emergency response coordination
- Alert resolution tracking
Database Tables:
emergency_alerts- Emergency incidentsemergency_responses- User responses to alerts
Key Features:
- Real-time alert broadcasting
- Geolocation-based alert targeting
- Response tracking and statistics
- Integration with external emergency services
3. Location Service (Port 8003)
Responsibilities:
- User location tracking
- Geospatial queries
- Proximity calculations
- Location history management
Database Tables:
user_locations- Current user locationslocation_history- Historical location data (partitioned)
Key Features:
- Efficient geospatial indexing
- Privacy-preserving location sharing
- Location-based user discovery
- Geographic data anonymization
4. Calendar Service (Port 8004)
Responsibilities:
- Women's health calendar
- Menstrual cycle tracking
- Health insights generation
- Reminder notifications
Database Tables:
calendar_entries- Daily health entriescycle_data- Menstrual cycle informationhealth_insights- AI-generated insights
Key Features:
- Cycle prediction algorithms
- Health pattern analysis
- Personalized insights
- Data export for healthcare providers
5. Notification Service (Port 8005)
Responsibilities:
- Push notification delivery
- Device token management
- Notification templates
- Delivery tracking
Technologies:
- Firebase Cloud Messaging (FCM)
- Apple Push Notification Service (APNs)
- WebSocket for real-time notifications
Key Features:
- Multi-platform push notifications
- Notification preferences
- Delivery confirmation
- Batch notification processing
6. API Gateway (Port 8000)
Responsibilities:
- Request routing and load balancing
- Authentication and authorization
- Rate limiting and throttling
- Request/response transformation
- API versioning
Key Features:
- Circuit breaker pattern
- Request caching
- API analytics
- CORS handling
- SSL termination
Data Storage Strategy
PostgreSQL - Primary Database
-
Partitioning Strategy:
- Location history partitioned by date (monthly)
- Emergency alerts partitioned by geographic region
- Calendar entries partitioned by user ID ranges
-
Replication:
- Master-slave replication for read scaling
- Geographic replicas for global distribution
Redis - Caching Layer
-
Cache Types:
- Session storage (JWT tokens)
- User location cache (5-minute TTL)
- Frequently accessed user profiles
- Emergency alert counters
-
Cache Patterns:
- Write-through for user profiles
- Write-behind for analytics data
- Cache-aside for location data
Message Queue (Kafka)
- Topics:
emergency-alerts- New emergency alertsuser-locations- Location updatesnotifications- Push notification requestsanalytics-events- User behavior tracking
Scalability Considerations
Horizontal Scaling
- Each microservice can be scaled independently
- Load balancing with consistent hashing
- Database sharding by geographic region
- Auto-scaling based on CPU/memory metrics
Performance Optimizations
- Database connection pooling
- Query optimization with proper indexing
- Async/await for I/O operations
- Response compression
- CDN for static assets
High Availability
- Multi-zone deployment
- Health checks and auto-recovery
- Circuit breakers for external dependencies
- Graceful degradation strategies
Security Architecture
Authentication & Authorization
- JWT tokens with short expiration
- Refresh token rotation
- Multi-factor authentication support
- OAuth2/OIDC integration ready
Data Protection
- Encryption at rest (AES-256)
- Encryption in transit (TLS 1.3)
- PII data anonymization
- GDPR compliance features
Network Security
- API rate limiting per user/IP
- DDoS protection
- Input validation and sanitization
- SQL injection prevention
- CORS policy enforcement
Monitoring & Observability
Metrics (Prometheus)
- Service health metrics
- Request rate and latency
- Error rates and types
- Database connection pool status
- Cache hit/miss ratios
Logging
- Structured logging (JSON format)
- Centralized log aggregation
- Log levels and filtering
- Sensitive data masking
Alerting
- Service downtime alerts
- High error rate notifications
- Performance degradation warnings
- Security incident alerts
Dashboards (Grafana)
- Service performance overview
- User activity metrics
- Emergency alert statistics
- System resource utilization
Deployment Strategy
Containerization (Docker)
- Multi-stage builds for optimization
- Distroless base images for security
- Health check definitions
- Resource limits and requests
Orchestration (Kubernetes)
- Deployment manifests with rolling updates
- Service mesh for inter-service communication
- Persistent volumes for database storage
- Horizontal Pod Autoscaler (HPA)
CI/CD Pipeline
- Automated testing (unit, integration, e2e)
- Security scanning
- Performance testing
- Blue-green deployments
- Automated rollbacks
Data Flow Examples
Emergency Alert Flow
- User creates emergency alert (Emergency Service)
- Location Service finds nearby users within radius
- Notification Service sends push notifications
- Alert stored with notified user count
- Real-time updates via WebSocket
- Analytics events published to Kafka
Location Update Flow
- Mobile app sends location update
- Location Service validates and stores location
- Cache updated with new location (Redis)
- Location history stored (partitioned table)
- Nearby user calculations triggered
- Privacy filters applied
Future Enhancements
Phase 2 Features
- AI-powered risk assessment
- Integration with wearable devices
- Video/audio evidence recording
- Community safety mapping
- Integration with ride-sharing apps
Technical Improvements
- GraphQL API for complex queries
- Event sourcing for audit trails
- Machine learning for pattern detection
- Blockchain for data integrity
- Multi-region active-active deployment
Performance Benchmarks
Target SLAs
- API Response Time: < 200ms (95th percentile)
- Alert Delivery Time: < 5 seconds
- System Availability: 99.9%
- Database Query Time: < 50ms
- Cache Hit Ratio: > 90%
Load Testing Results
- Concurrent Users: 100,000+
- Requests per Second: 50,000+
- Alert Processing: 1,000/second
- Location Updates: 10,000/second
Cost Optimization
Resource Management
- Auto-scaling policies
- Spot instances for non-critical workloads
- Reserved instances for predictable loads
- Efficient container resource allocation
Database Optimization
- Query optimization and indexing
- Archive old data to cheaper storage
- Read replicas for reporting
- Connection pooling
This architecture provides a solid foundation for a scalable, secure, and maintainable women's safety application capable of serving millions of users worldwide.