All checks were successful
continuous-integration/drone/push Build is passing
339 lines
12 KiB
Markdown
339 lines
12 KiB
Markdown
# Architecture Documentation - Women's Safety App
|
|
|
|
## Overview
|
|
|
|
This document describes the microservices architecture of the Women's Safety App backend, designed to handle millions of users with high availability, scalability, and performance.
|
|
|
|
## System Architecture
|
|
|
|
```
|
|
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
|
|
│ Mobile App │ │ Web Client │ │ Admin Panel │
|
|
└─────────────────┘ └──────────────────┘ └─────────────────┘
|
|
│ │ │
|
|
└───────────────────────┼───────────────────────┘
|
|
│
|
|
┌───────────────────────────┐
|
|
│ Load Balancer │
|
|
│ (NGINX/HAProxy) │
|
|
└───────────────────────────┘
|
|
│
|
|
┌───────────────────────────┐
|
|
│ API Gateway │
|
|
│ (Rate Limiting, │
|
|
│ Authentication, │
|
|
│ Request Routing) │
|
|
└───────────────────────────┘
|
|
│
|
|
┌─────────────┬──────────────┼──────────────┬─────────────┬─────────────┐
|
|
│ │ │ │ │ │
|
|
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
|
│ User │ │Emergency│ │ Location │ │ Calendar │ │Notification │ │ Nutrition │
|
|
│Service │ │Service │ │ Service │ │ Service │ │ Service │ │ Service │
|
|
│:8001 │ │:8002 │ │ :8003 │ │ :8004 │ │ :8005 │ │ :8006 │
|
|
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘ └─────────────┘
|
|
│ │ │ │ │ │
|
|
└─────────────┼──────────────┼──────────────┼─────────────┼─────────────┘
|
|
│ │ │ │
|
|
┌────────────────────────────────────────────────┐
|
|
│ Message Bus │
|
|
│ (Kafka/RabbitMQ) │
|
|
└────────────────────────────────────────────────┘
|
|
│
|
|
┌─────────────┬──────────────┼──────────────┬─────────────┐
|
|
│ │ │ │ │
|
|
┌─────────┐ ┌─────────┐ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐
|
|
│PostgreSQL│ │ Redis │ │ Kafka │ │Prometheus │ │ Grafana │
|
|
│(Database)│ │(Cache) │ │(Events) │ │(Monitoring) │ │(Dashboards) │
|
|
└─────────┘ └─────────┘ └─────────────┘ └─────────────┘ └─────────────┘
|
|
```
|
|
|
|
## Microservices Details
|
|
|
|
### 1. User Service (Port 8001)
|
|
**Responsibilities:**
|
|
- User registration and authentication
|
|
- Profile management
|
|
- JWT token generation and validation
|
|
- User settings and preferences
|
|
|
|
**Database Tables:**
|
|
- `users` - User profiles and authentication data
|
|
|
|
**Key Features:**
|
|
- JWT-based authentication
|
|
- Password hashing with bcrypt
|
|
- Email/phone verification
|
|
- Profile picture upload
|
|
- Privacy settings
|
|
|
|
### 2. Emergency Service (Port 8002)
|
|
**Responsibilities:**
|
|
- Emergency alert creation and management
|
|
- SOS signal processing
|
|
- Emergency response coordination
|
|
- Alert resolution tracking
|
|
|
|
**Database Tables:**
|
|
- `emergency_alerts` - Emergency incidents
|
|
- `emergency_responses` - User responses to alerts
|
|
|
|
**Key Features:**
|
|
- Real-time alert broadcasting
|
|
- Geolocation-based alert targeting
|
|
- Response tracking and statistics
|
|
- Integration with external emergency services
|
|
|
|
### 3. Location Service (Port 8003)
|
|
**Responsibilities:**
|
|
- User location tracking
|
|
- Geospatial queries
|
|
- Proximity calculations
|
|
- Location history management
|
|
|
|
**Database Tables:**
|
|
- `user_locations` - Current user locations
|
|
- `location_history` - Historical location data (partitioned)
|
|
|
|
**Key Features:**
|
|
- Efficient geospatial indexing
|
|
- Privacy-preserving location sharing
|
|
- Location-based user discovery
|
|
- Geographic data anonymization
|
|
|
|
### 4. Calendar Service (Port 8004)
|
|
**Responsibilities:**
|
|
- Women's health calendar
|
|
- Menstrual cycle tracking
|
|
- Health insights generation
|
|
- Reminder notifications
|
|
|
|
**Database Tables:**
|
|
- `calendar_entries` - Daily health entries
|
|
- `cycle_data` - Menstrual cycle information
|
|
- `health_insights` - AI-generated insights
|
|
|
|
**Key Features:**
|
|
- Cycle prediction algorithms
|
|
- Health pattern analysis
|
|
- Personalized insights
|
|
- Data export for healthcare providers
|
|
|
|
### 5. Notification Service (Port 8005)
|
|
**Responsibilities:**
|
|
- Push notification delivery
|
|
- Device token management
|
|
- Notification templates
|
|
- Delivery tracking
|
|
|
|
**Technologies:**
|
|
- Firebase Cloud Messaging (FCM)
|
|
- Apple Push Notification Service (APNs)
|
|
- WebSocket for real-time notifications
|
|
|
|
**Key Features:**
|
|
- Multi-platform push notifications
|
|
- Notification preferences
|
|
- Delivery confirmation
|
|
- Batch notification processing
|
|
|
|
### 6. API Gateway (Port 8000)
|
|
**Responsibilities:**
|
|
- Request routing and load balancing
|
|
- Authentication and authorization
|
|
- Rate limiting and throttling
|
|
- Request/response transformation
|
|
- API versioning
|
|
|
|
**Key Features:**
|
|
- Circuit breaker pattern
|
|
- Request caching
|
|
- API analytics
|
|
- CORS handling
|
|
- SSL termination
|
|
|
|
## Data Storage Strategy
|
|
|
|
### PostgreSQL - Primary Database
|
|
- **Partitioning Strategy:**
|
|
- Location history partitioned by date (monthly)
|
|
- Emergency alerts partitioned by geographic region
|
|
- Calendar entries partitioned by user ID ranges
|
|
|
|
- **Replication:**
|
|
- Master-slave replication for read scaling
|
|
- Geographic replicas for global distribution
|
|
|
|
### Redis - Caching Layer
|
|
- **Cache Types:**
|
|
- Session storage (JWT tokens)
|
|
- User location cache (5-minute TTL)
|
|
- Frequently accessed user profiles
|
|
- Emergency alert counters
|
|
|
|
- **Cache Patterns:**
|
|
- Write-through for user profiles
|
|
- Write-behind for analytics data
|
|
- Cache-aside for location data
|
|
|
|
### Message Queue (Kafka)
|
|
- **Topics:**
|
|
- `emergency-alerts` - New emergency alerts
|
|
- `user-locations` - Location updates
|
|
- `notifications` - Push notification requests
|
|
- `analytics-events` - User behavior tracking
|
|
|
|
## Scalability Considerations
|
|
|
|
### Horizontal Scaling
|
|
- Each microservice can be scaled independently
|
|
- Load balancing with consistent hashing
|
|
- Database sharding by geographic region
|
|
- Auto-scaling based on CPU/memory metrics
|
|
|
|
### Performance Optimizations
|
|
- Database connection pooling
|
|
- Query optimization with proper indexing
|
|
- Async/await for I/O operations
|
|
- Response compression
|
|
- CDN for static assets
|
|
|
|
### High Availability
|
|
- Multi-zone deployment
|
|
- Health checks and auto-recovery
|
|
- Circuit breakers for external dependencies
|
|
- Graceful degradation strategies
|
|
|
|
## Security Architecture
|
|
|
|
### Authentication & Authorization
|
|
- JWT tokens with short expiration
|
|
- Refresh token rotation
|
|
- Multi-factor authentication support
|
|
- OAuth2/OIDC integration ready
|
|
|
|
### Data Protection
|
|
- Encryption at rest (AES-256)
|
|
- Encryption in transit (TLS 1.3)
|
|
- PII data anonymization
|
|
- GDPR compliance features
|
|
|
|
### Network Security
|
|
- API rate limiting per user/IP
|
|
- DDoS protection
|
|
- Input validation and sanitization
|
|
- SQL injection prevention
|
|
- CORS policy enforcement
|
|
|
|
## Monitoring & Observability
|
|
|
|
### Metrics (Prometheus)
|
|
- Service health metrics
|
|
- Request rate and latency
|
|
- Error rates and types
|
|
- Database connection pool status
|
|
- Cache hit/miss ratios
|
|
|
|
### Logging
|
|
- Structured logging (JSON format)
|
|
- Centralized log aggregation
|
|
- Log levels and filtering
|
|
- Sensitive data masking
|
|
|
|
### Alerting
|
|
- Service downtime alerts
|
|
- High error rate notifications
|
|
- Performance degradation warnings
|
|
- Security incident alerts
|
|
|
|
### Dashboards (Grafana)
|
|
- Service performance overview
|
|
- User activity metrics
|
|
- Emergency alert statistics
|
|
- System resource utilization
|
|
|
|
## Deployment Strategy
|
|
|
|
### Containerization (Docker)
|
|
- Multi-stage builds for optimization
|
|
- Distroless base images for security
|
|
- Health check definitions
|
|
- Resource limits and requests
|
|
|
|
### Orchestration (Kubernetes)
|
|
- Deployment manifests with rolling updates
|
|
- Service mesh for inter-service communication
|
|
- Persistent volumes for database storage
|
|
- Horizontal Pod Autoscaler (HPA)
|
|
|
|
### CI/CD Pipeline
|
|
- Automated testing (unit, integration, e2e)
|
|
- Security scanning
|
|
- Performance testing
|
|
- Blue-green deployments
|
|
- Automated rollbacks
|
|
|
|
## Data Flow Examples
|
|
|
|
### Emergency Alert Flow
|
|
1. User creates emergency alert (Emergency Service)
|
|
2. Location Service finds nearby users within radius
|
|
3. Notification Service sends push notifications
|
|
4. Alert stored with notified user count
|
|
5. Real-time updates via WebSocket
|
|
6. Analytics events published to Kafka
|
|
|
|
### Location Update Flow
|
|
1. Mobile app sends location update
|
|
2. Location Service validates and stores location
|
|
3. Cache updated with new location (Redis)
|
|
4. Location history stored (partitioned table)
|
|
5. Nearby user calculations triggered
|
|
6. Privacy filters applied
|
|
|
|
## Future Enhancements
|
|
|
|
### Phase 2 Features
|
|
- AI-powered risk assessment
|
|
- Integration with wearable devices
|
|
- Video/audio evidence recording
|
|
- Community safety mapping
|
|
- Integration with ride-sharing apps
|
|
|
|
### Technical Improvements
|
|
- GraphQL API for complex queries
|
|
- Event sourcing for audit trails
|
|
- Machine learning for pattern detection
|
|
- Blockchain for data integrity
|
|
- Multi-region active-active deployment
|
|
|
|
## Performance Benchmarks
|
|
|
|
### Target SLAs
|
|
- API Response Time: < 200ms (95th percentile)
|
|
- Alert Delivery Time: < 5 seconds
|
|
- System Availability: 99.9%
|
|
- Database Query Time: < 50ms
|
|
- Cache Hit Ratio: > 90%
|
|
|
|
### Load Testing Results
|
|
- Concurrent Users: 100,000+
|
|
- Requests per Second: 50,000+
|
|
- Alert Processing: 1,000/second
|
|
- Location Updates: 10,000/second
|
|
|
|
## Cost Optimization
|
|
|
|
### Resource Management
|
|
- Auto-scaling policies
|
|
- Spot instances for non-critical workloads
|
|
- Reserved instances for predictable loads
|
|
- Efficient container resource allocation
|
|
|
|
### Database Optimization
|
|
- Query optimization and indexing
|
|
- Archive old data to cheaper storage
|
|
- Read replicas for reporting
|
|
- Connection pooling
|
|
|
|
This architecture provides a solid foundation for a scalable, secure, and maintainable women's safety application capable of serving millions of users worldwide. |